

Prostaglandins involved in contractions by angiotensin II and bradykinin of isolated dog sphincter pupillae

Wei Lu, Tomio Okamura, Ka Bian, *Akihiro Inatomi & ¹Noboru Toda

Departments of Pharmacology and *Ophthalmology, Shiga University of Medical Sciences, Seta, Ohtsu 520-21, Japan

1 The dog isolated sphincter pupillae contracted in response to acetylcholine, angiotensin II (AII), bradykinin, prostaglandins $F_{2\alpha}$, D_2 , E_2 and I_2 , and thionate thromboxane A_2 (sTXA₂) in a concentration-dependent manner.

2 AII-induced contractions were suppressed by treatment with saralasin, indomethacin, aspirin and diphloretin phosphate (DPP), a prostaglandin receptor antagonist. Contractions induced by bradykinin were also attenuated by indomethacin, aspirin and DPP. The amount of prostaglandin $F_{2\alpha}$ (PGF_{2 α}) in the bathing media was increased approximately 41% following stimulation of the preparations by bradykinin.

3 The potency of contractile responses was in the order of PGF_{2 α} > PGD₂ = sTXA₂ > PGE₂ > arachidonic acid > PGI₂. Contractions induced by PGF_{2 α} were not significantly affected by treatment with indomethacin and ONO3708, an antagonist of the vasoconstrictor effect of prostaglandins, but appreciably attenuated by DPP. Arachidonic acid-induced contractions were inhibited by indomethacin.

4 Contractions of dog iris sphincter muscle in response to AII and bradykinin may be mediated via substances synthesized by cyclo-oxygenase from arachidonic acid. The distribution and nature of the prostaglandin receptors appear to differ markedly in iris sphincter and vascular smooth muscles.

Introduction

Iris sphincter and dilator muscles control the size of pupils via autonomic nerves and possibly by endogenous substances, including amines, peptides, fatty acids, etc. The sphincter muscles are contracted physiologically by activation of cholinergic nerves; electrical stimulation of the nerves and acetylcholine markedly contract the isolated sphincter muscle preparation (Yamauchi *et al.*, 1973; Ueda *et al.*, 1981; Narita & Watanabe, 1981). However, prostaglandins and thromboxane B₂ (TXB₂) have been chemically detected in the bovine iris, choroid and ciliary body (Fujiwara, 1983), and active metabolites of arachidonic acid produced by the cyclo-oxygenase pathway are considered to modulate the function of uveal tissues and to be involved in functional disorders, such as inflammation and trauma (Beitch & Eakins, 1969; Cole & Unger, 1973; Eakins, 1977; Unger *et al.*, 1977; Bhattacherjee, 1980).

Biologically active polypeptides, such as angiotensin II (AII) and bradykinin, release prostaglan-

dins from blood vessels (Blumberg *et al.*, 1977; Toda, 1981; Toda *et al.*, 1987), cultured vein smooth muscle cells (Alexander & Gimbrone, 1976) and other tissues (Ercan & Türker, 1977; Ercan *et al.*, 1978; Türker, 1982), which possibly mediate physiological and pathophysiological actions of the peptides. These polypeptides present in plasma and produced locally would also be expected to act on receptors on sphincter muscle cells. Hence, the present study was undertaken to determine the actions of AII, bradykinin, prostaglandins and a TXA₂ analogue, in comparison with acetylcholine, on the dog isolated sphincter muscle preparation in order to clarify the mechanism of action of the polypeptides in relation to the release of prostaglandins.

Methods

Preparation

Mongrel dogs of either sex, weighing 7–14 kg, were anaesthetized with intravenous injections of sodium

¹ Author for correspondence.

pentobarbitone (30 mg kg^{-1}) and killed by bleeding from the common carotid arteries. Eyes were rapidly removed. One strip of the iris sphincter was isolated from each eye. The strip was fixed vertically between hooks in the muscle bath of 20 ml capacity containing a modified Ringer-Locke solution, which was maintained at $37 \pm 0.3^\circ\text{C}$ and aerated with a mixture of 95% O_2 and 5% CO_2 . The hook anchoring the upper end of the strip was connected to the lever of a force-displacement transducer (Nihonkohden Kogyo Co., Tokyo, Japan). The resting tension was adjusted to 50 mg. Constituents of the Ringer-Locke solution were (mm): NaCl 120, KCl 5.4, NaHCO_3 25.0, CaCl_2 2.2, MgCl_2 1.0 and dextrose 5.6. The pH of the solution was 7.3–7.4. Before the start of the experiments the strips were allowed to equilibrate for 60 to 90 min in control media, during which time the solutions were replaced every 10 to 15 min.

Recording

Isometric contractions were recorded on an ink-writing oscillograph (Nihonkohden Kogyo Co.). The contractile response to 30 mM K^+ was first obtained, and the preparations were washed three times with control media and equilibrated for 40–50 min. Concentration-response curves for acetylcholine, bradykinin, prostaglandins, a TXA_2 analogue or arachidonic acid were obtained by adding the agent directly to the bathing media in cumulative concentrations. To determine the concentration-response relationship for AII, the response to 10^{-7} M AII was obtained twice, and then the response to AII in a single concentration (5×10^{-9} to $5 \times 10^{-7} \text{ M}$) was obtained. Preparations were treated for 30 min with diphloretin phosphate (DPP) or ONO3708 and for 20 min with other pharmacological inhibitors, before the response to the agonist was obtained.

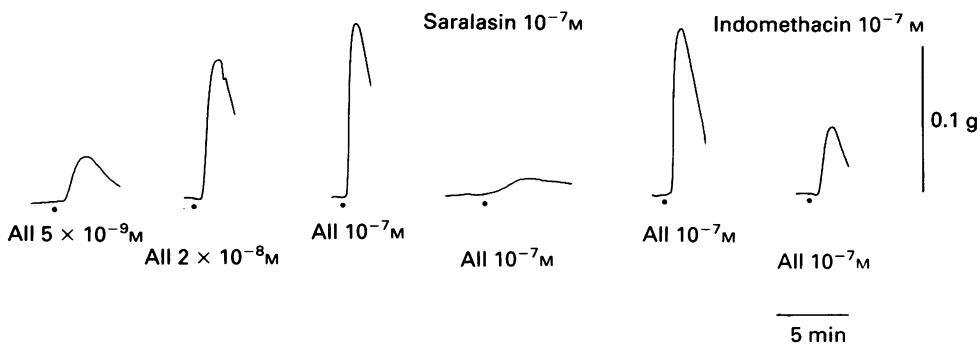
Measurement of prostaglandin $\text{F}_{2\alpha}$

Two sphincter muscle strips obtained from eyes of the same dogs were used for the paired analysis of prostaglandin $\text{F}_{2\alpha}$ ($\text{PGF}_{2\alpha}$) release in the bathing media. After 20 min preincubation at 37°C , one of the strips was treated with 10^{-7} M bradykinin, and the other strip was treated with vehicle. The preparation was incubated for 15 min before adding indomethacin (10^{-6} M) to stop the further production of $\text{PGF}_{2\alpha}$. The bathing medium was then quickly collected by aspiration and stored frozen at below -60°C until the assay. Samples were concentrated ten times by SEP-PAK C18 column (Waters, MA, U.S.A.) before the assay. $\text{PGF}_{2\alpha}$ was measured by radioimmunoassay using a commercial kit ($[^3\text{H}]$ - $\text{PGF}_{2\alpha}$ assay system, Amersham, England).

Statistics and drugs

Results shown in the text and figures are expressed as mean \pm s.e.mean. Statistical analyses were made by use of Student's paired and unpaired t test and Tukey's method after one-way analysis of variance. Drugs used were $\text{PGF}_{2\alpha}$, PGE_2 , PGD_2 , PGI_2 , sTXA_2 (9,11-epithio-11,12-methano TXA_2) and ONO3708 ((9,11),(11,12)-dideoxa-9 α ,11 α -di-methyl-methano-11,12-methano-13,14-dihydro-13-azo-14-oxo-15-cyclo-pentanyl-16, 17,18,19,20-pentanor-15-epi- TXA_2) (Ono Pharmaceutical Co., Osaka, Japan), diphloretin phosphate (Leo Co., Helsingborg, Sweden), arachidonic acid and indomethacin (Sigma, St. Louis, MO, U.S.A.), angiotensin II, [Sar^1 , Ala^8]angiotensin II(saralasin) and bradykinin (Peptide Institute Inc., Minoh, Japan), acetyl-salicyclic acid (Nakarai Chemicals, Kyoto, Japan) and sodium pentobarbitone (Abbott Lab, North Chicago, IL, U.S.A.).

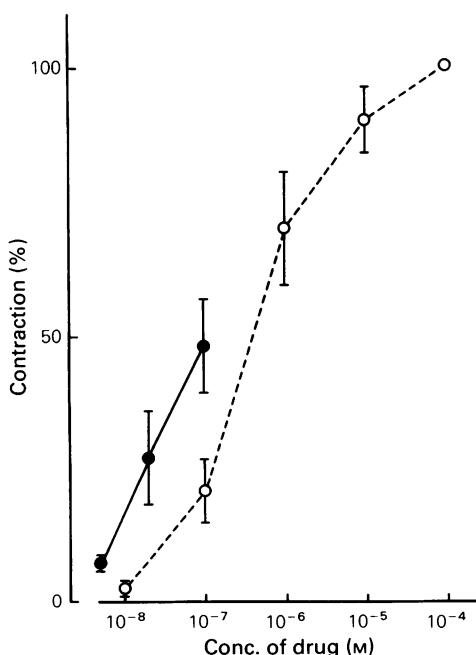
Results

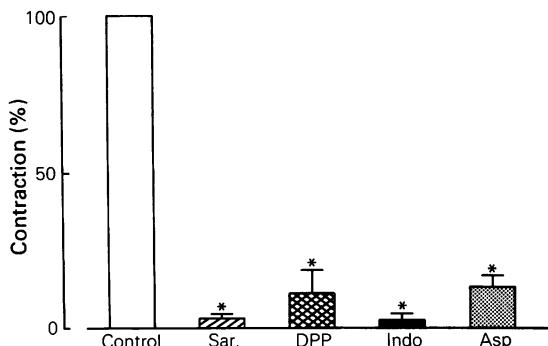

Response to angiotensin II

The addition of AII (5×10^{-9} to 10^{-7} M) produced a concentration-dependent contraction in the dog isolated sphincter muscle (Figure 1). The contraction developed rapidly and did not persist for long. The rate of contraction was related directly to the magnitude of contraction. The magnitude of the contraction was quantitatively compared to that induced by acetylcholine (see Figure 2). No tachyphylaxis developed even after repeated applications of AII.

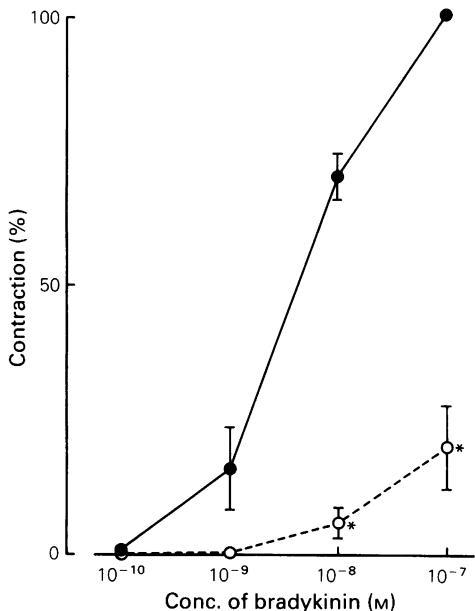
The contractile response to AII (10^{-7} M) was abolished almost completely by treatment with 10^{-7} M saralasin, but the inhibition was reversed by removal of the antagonist (Figure 1). Treatment with 10^{-7} M indomethacin reduced the response. The inhibition was also reversed by repeated rinsing of the preparation with fresh media. The quantitative data with saralasin, indomethacin (10^{-6} M), aspirin and diphloretin phosphate (DPP), a prostaglandin antagonist (Eakins, 1971; Toda, 1984), are summarized in Figure 3. Treatment with 10^{-7} M saralasin and 10^{-5} M DPP did not significantly alter the contraction induced by 30 mM K^+ ($n = 3$ and 4, respectively). Indomethacin (10^{-6} M) failed to inhibit the response to $\text{PGF}_{2\alpha}$, as shown later.

Response to bradykinin


Bradykinin (10^{-10} to 10^{-7} M) contracted sphincter muscle preparations in a concentration-dependent manner (Figure 4). The contraction was maintained


Figure 1 Concentration-dependent contractions induced by angiotensin II (AII, 1st to 3rd tracings) and modifications of the response to 10^{-7} M angiotensin II by 10^{-7} M saralasin and 10^{-7} M indomethacin (3rd to 6th tracings) in a dog iris sphincter strip.

with the peptide in concentrations up to 10^{-9} M, but did not persist long with the higher concentrations. Maximal contractions were obtained at 10^{-7} M; the mean value was $123 \pm 21.1\%$ ($n = 7$) of the contraction induced by 10^{-4} M acetylcholine. The median effective concentration (EC_{50}) of bradykinin was $3.3 \pm 1.3 \times 10^{-9}$ M ($n = 5$). The concentration-


response curve was reproducible after a second series of trials; thus, the second curve was taken as a control. The contractile response to the peptide was markedly attenuated by treatment with 10^{-6} M indomethacin (Figure 4). Significant attenuation of the response was also obtained in preparations treated with 5×10^{-5} M aspirin ($n = 12$); the contractions induced by 10^{-9} , 10^{-8} and 10^{-7} M bradykinin were inhibited by 69.1 ± 7.4 , 47.4 ± 10.2 ($P < 0.001$) and $38.9 \pm 10.9\%$ ($P < 0.01$), respectively. The concentration-response curve for bradykinin was shifted to the right by treatment with DPP (Figure 5). The K_B value of DPP was $7.1 \pm 0.4 \times 10^{-6}$ M ($n = 5$). Treatment with 3×10^{-7} M ONO3708, a

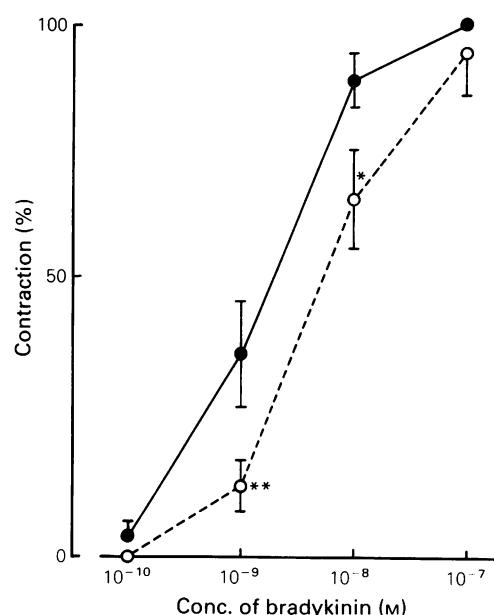
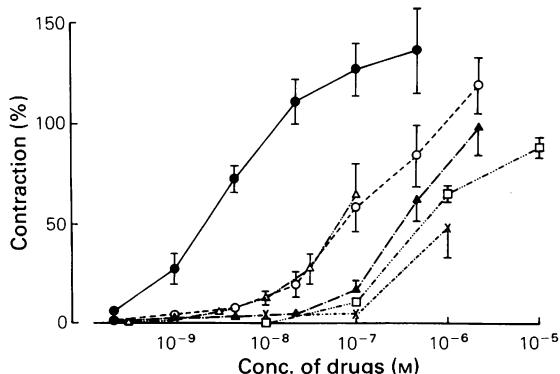

Figure 2 Concentration-response curves for angiotensin II (●, $n = 8$) and acetylcholine (○, $n = 8$) in the dog iris sphincter muscle. Contractions induced by 10^{-4} M acetylcholine were taken as 100%; the mean absolute (\pm s.e.mean) value was 183.6 ± 13.2 mg ($n = 8$). Vertical lines represent s.e.mean.

Figure 3 Modification by 10^{-7} M saralasin (Sar) (hatched column, $n = 7$), 10^{-5} M diphloretin phosphate (DPP) (cross-hatched column, $n = 6$), 10^{-6} M indomethacin (Indo) (solid column, $n = 10$) and 5×10^{-5} M aspirin (Asp) (stippled column, $n = 7$) of the angiotensin II (10^{-7} M)-induced contraction in iris sphincter strips. Contractions induced by angiotensin II in control preparations (open column, $n = 10$) were taken as 100%; the mean absolute (\pm s.e.mean) value was 49.2 ± 9.4 mg ($n = 10$). Significantly different from controls; * $P < 0.001$. Vertical lines indicate s.e.mean.

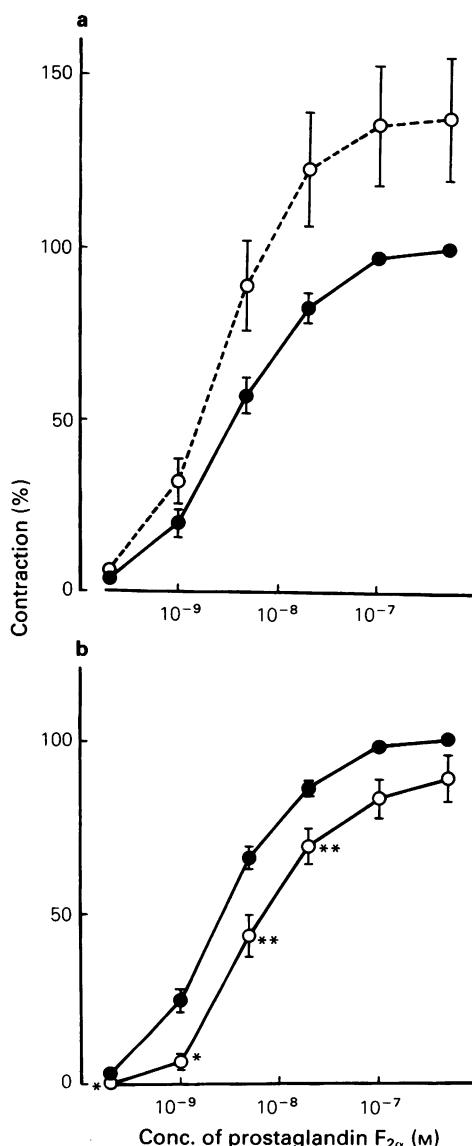
Figure 4 Modification by 10^{-6} M indomethacin (○, $n = 7$) of the contractile response to bradykinin in iris sphincter strips. Contractions induced by 10^{-7} M bradykinin in control media (●, $n = 7$) were taken as 100%; the mean absolute (\pm s.e.mean) value was 117.0 ± 14.4 mg ($n = 7$). Significantly different from controls; * $P < 0.001$. Vertical lines indicate s.e.mean.

Figure 5 Modification by 10^{-5} M diphloretin phosphate (○, $n = 6$) of the contractile response to bradykinin in iris sphincter strips. Contractions induced by 10^{-7} M bradykinin in control media (●, $n = 6$) were taken as 100%; the mean absolute (\pm s.e.mean) value was 179.8 ± 17.0 mg ($n = 6$). Significantly different from controls; * $P < 0.025$, ** $P < 0.05$. Vertical lines indicate s.e.mean.


TXA₂ analogue which suppresses the contractile response of dog isolated arteries to prostaglandins and thionate TXA₂ (sTXA₂; Toda *et al.*, 1986), did not attenuate the contraction induced by bradykinin ($n = 4$).

Responses to prostaglandins, a TXA₂ analogue and arachidonic acid

Concentration-response curves for the contractile effects of prostaglandins (2×10^{-10} to 2×10^{-6} M), sTXA₂ (2×10^{-10} to 10^{-7} M), a stable analogue of TXA₂, and arachidonic acid (10^{-8} to 10^{-5} M) obtained under resting conditions are summarized in Figure 6. The contractile potency was in the order of PGF_{2 α} > PGD₂ = sTXA₂ > PGE₂ > arachidonic acid > PGI₂.


In the preparations partially contracted with acetylcholine or PGF_{2 α} , PGI₂, a potent vasodilator (Toda, 1980), in concentrations up to 10^{-6} M did not produce a relaxation. The maximal contractile response to PGF_{2 α} was approximately 1.4 times as large as that induced by 10^{-4} M acetylcholine (Figure 6), and $352 \pm 69.5\%$ ($n = 7$) of that induced by 30 mM K⁺.

The contractile response to PGF_{2 α} tended to be

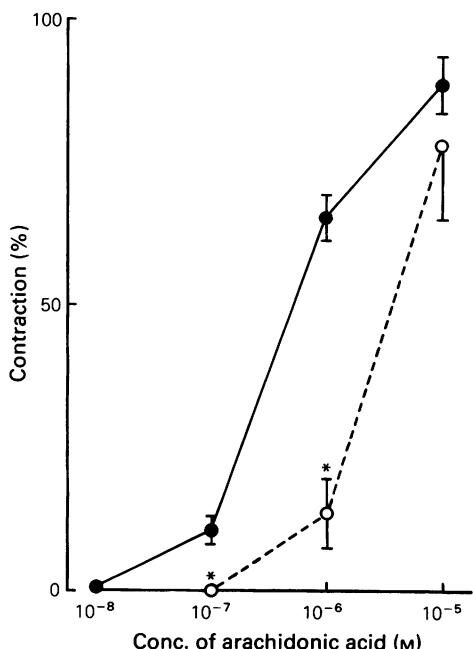


Figure 6 Concentration-response curves for prostaglandin F_{2 α} (PGF_{2 α} ; ●, $n = 7$), PGD₂ (○, $n = 7$), PGE₂ (▲, $n = 7$), thionate thromboxane A₂ (△, $n = 6$), PGI₂ (×, $n = 4$) and arachidonic acid (□, $n = 8$) in iris sphincter strips. Contractions induced by 10^{-4} M acetylcholine were taken as 100%; the mean absolute (\pm s.e.mean) value was 184.8 ± 16.2 mg ($n = 15$). Vertical lines indicate s.e.mean.

potentiated by treatment with 10^{-6} M indomethacin (Figure 7a); however, the difference was not statistically significant. The PGF_{2 α} -induced contraction

Figure 7 Modification by 10^{-6} M indomethacin (a, ○, $n = 7$) and 10^{-5} M diphloretin phosphate (b, ○, $n = 6$) of the contractile response to prostaglandin F_{2 α} (PGF_{2 α}) in iris sphincter strips. Contractions induced by 5×10^{-7} M PGF_{2 α} in control media (●) were taken as 100%; mean absolute (\pm s.e.mean) values in (a) and (b) were 143.8 ± 17.2 mg ($n = 7$) and 205.6 ± 24.4 mg ($n = 6$), respectively. Significantly different from controls; * $P < 0.005$, ** $P < 0.025$. Vertical lines indicate s.e.mean.

Figure 8 Concentration-response curves for arachidonic acid in the presence (○, $n = 8$) and absence (●, $n = 8$) of 10^{-6} M indomethacin in iris sphincter strips. Responses were compared in pairs of strips obtained from the same dogs. Contractions induced by 10^{-4} M acetylcholine were taken as 100%; the mean (\pm s.e.mean) value was 216.0 ± 23.0 mg ($n = 8$). Significantly different from controls; * $P < 0.001$.

was significantly inhibited by 10^{-5} M DPP (Figure 7b). The K_B value of DPP was $1.7 \pm 0.8 \times 10^{-5}$ M ($n = 5$). Similar attenuation was also obtained with the contractions induced by PGE₂ ($n = 2$), PGD₂ ($n = 2$) and sTXA₂ ($n = 1$). The inhibitory effect was reversed by washing the preparations with fresh media. Treatment with 3×10^{-7} M ONO3708, failed to alter significantly the contraction induced by PGF_{2 α} ($n = 5$).

Tachyphylaxis developed to the contractile response to arachidonic acid. Therefore, the responses of pairs of muscle preparations obtained from the same dogs were compared in the presence and absence of indomethacin. The concentration-response curve for arachidonic acid was shifted to the right by treatment with 10^{-6} M indomethacin (Figure 8).

Release of PGF_{2 α} by bradykinin

Paired comparisons were made of the amount of PGF_{2 α} in the bathing media in which sphincter muscle preparations from the same dogs were

treated with either bradykinin or its vehicle. The amount of PGF_{2 α} released from control preparations in the media averaged $95.7 \pm 7.6 \text{ pg mg}^{-1}$ wet tissue weight ($n = 8$). Treatment with bradykinin significantly increased the release by $40.5 \pm 8.6\%$ ($n = 8$, $P < 0.001$).

Discussion

AII contracted the dog isolated sphincter muscle in a concentration-dependent manner. The contraction appears to be mediated by activation of the AII receptor as saralasin, a selective antagonist of the AII receptor, suppressed the peptide-induced contraction but not the contraction evoked by K⁺. Indomethacin and aspirin, cyclo-oxygenase inhibitors, markedly inhibited the AII-induced contraction but did not significantly alter the contraction induced by PGF_{2 α} . The contractions produced by AII and PGF_{2 α} , but not those induced by K⁺, were attenuated by DPP in a concentration (10^{-5} M) sufficient to inhibit significantly the contractile response of dog coronary arteries to PGF_{2 α} and carbocyclic TXA₂ (Toda, 1982; 1984). Therefore, AII probably contracts dog sphincter muscle by activation of AII receptors, which then results in the release of prostaglandins and TXA₂ intracellularly synthesized from arachidonic acid. AII has been demonstrated to release prostaglandins from isolated and perfused vasculature (McGiff *et al.*, 1970; Aiken & Vane, 1973; Needleman *et al.*, 1975; Toda & Miyazaki, 1981) and from cultured vein smooth muscle cells (Alexander & Gimbrone, 1976).

Bradykinin-induced contractions were approximately 1.5 times as large as the maximum contraction elicited by acetylcholine. Treatment with indomethacin, aspirin and DPP significantly reduced the peptide-induced contraction. Thus, the contraction elicited by bradykinin appears to be mediated by products of the cyclo-oxygenase pathway, as is the response to AII. In fact, biochemical assay data indicate that the release of PGF_{2 α} from sphincter muscle is appreciably increased in response to bradykinin. Bradykinin has been demonstrated to release PGF_{2 α} , PGE₂ and PGI₂ from blood vessels (Aiken, 1974; Needleman *et al.*, 1975; Messina *et al.*, 1975; Türker, 1982; Förstermann *et al.*, 1986; Toda *et al.*, 1987). The antagonism by indomethacin of the response to bradykinin and AII was appreciably greater than that of the response to arachidonic acid (cf. Figures 3, 4 and 8). Such a difference may be explained by the following: (a) the susceptibility to cyclo-oxygenase inhibition differs in the conversion of endogenous and exogenous arachidonic acid to prostaglandins; or (b) the response to arachidonic acid is mediated by cyclo-oxygenase products and is also associated with possible alterations in the per-

turbation of cell membranes and thus ionic conductance (Chan & Fishman, 1982).

PGF_{2 α} , PGE₂, PGD₂ and the TXA₂ analogue, sTXA₂, contracted the dog sphincter muscle dose-dependently. PGI₂ did not produce a relaxation in muscle preparations even in those previously contracted with acetylcholine or PGF_{2 α} . The potency in producing contractions was in the order of PGF_{2 α} > PGD₂ = sTXA₂ > PGE₂ > PGI₂. However, in dog coronary arteries the potency is in the order of TXA₂ analogues, such as sTXA₂ (Toda *et al.*, 1986) and carbocyclic TXA₂ (Toda, 1982), \gg PGE₂ = PGA₂ > PGF_{2 α} > PGD₂, and PGI₂ relaxes these arteries (Toda, 1984). PGF_{2 α} -induced contractions in sphincter muscle were approximately 130–140% of the contraction due to 30 mM K⁺, whereas those in dog cerebral, coronary, mesenteric and femoral arteries are 60–80% of the K⁺-induced contraction (Toda & Miyazaki, 1978). Despite such a marked difference in the potency and the magnitude of contraction, contractile responses to prostaglandins of both the sphincter and the arterial smooth muscle were significantly attenuated by DPP, a prostaglandin antagonist. ONO3708 has a TXA₂-like structure (Kawahara *et al.*, 1983) and is a potent inhibitor of the vasoconstrictor effect of prostaglandins in arterial muscle (Toda *et al.*, 1986). The ED₅₀ value of sTXA₂ was $0.93 \times 10^{-9} \text{ M}$ in dog coronary arteries (Toda *et al.*, 1986) and approximately 10^{-7} M in dog sphincter pupillae (if it is assumed that the high concentrations of sTXA₂ produce contractions to the level attained by PGF_{2 α} , Figure 6). Therefore, the affinity of the TXA₂ analogue, ONO3708, in sphincter muscle was assumed to be about 1/100 of that in coronary arteries. ONO3708 $3 \times 10^{-9} \text{ M}$ moderately attenuated the coronary arterial contraction induced by sTXA₂ and PGF_{2 α} (Toda *et al.*, 1986), whereas the antagonist in a concentration 100 times higher ($3 \times 10^{-7} \text{ M}$) did not reduce the PGF_{2 α} -induced contraction of sphincter muscle. These findings may indicate a marked difference in the distribution and nature of prostaglandin receptors in dog sphincter and arterial smooth muscle.

The presence of prostaglandins in bovine uveal tissues has been detected chemically (Fujiwara, 1983), and their quantity increases in inflammatory reactions (Bhattacherjee, 1980). The present study revealed a possible production of prostaglandins from arachidonic acid in sphincter muscle, since the fatty acid-induced contraction was evidently reduced by treatment with indomethacin. Arachidonic acid would be released by endogenous peptides intracellularly, such as AII and bradykinin. Bradykinin and PGF_{2 α} can contract dog sphincter muscle to an appreciably greater extent than acetylcholine. These peptides and prostaglandins may have a physiological and pathophysiological role in the pupil and surrounding tissues.

References

AIKEN, J.W. (1974). Inhibitors of prostaglandin synthesis specially antagonize bradykinin and angiotensin-induced relaxations of the isolated coeliac artery of the rabbit. *Pharmacologist*, **16**, 195.

AIKEN, J.W. & VANE, J.R. (1973). Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. *J. Pharmacol. Exp. Ther.*, **184**, 678-687.

ALEXANDAR, R.W. & GIMBRONE, M.A. (1976). Stimulation of prostaglandin E synthesis in cultured human umbilical vein smooth muscle cells. *Proc. Natl. Acad. Sci. U.S.A.*, **73**, 1617-1620.

BEITCH, B.R. & EAKINS, K.E. (1969). The effects of prostaglandins on the intraocular pressure of the rabbit. *Br. J. Pharmacol.*, **37**, 158-167.

BHATTACHERJEE, P. (1980). Prostaglandins and inflammatory reactions. *Mech. and Find Exp. Clin. Pharmacol.*, **2**, 17-31.

BLUMBERG, A.L., DENNY, S.E., MARSHALL, G.R. & NEEDLEMAN, P. (1977). Blood vessel-hormone interactions: angiotensin, bradykinin and prostaglandins. *Am. J. Physiol.*, **232**, H305-H310.

CHAN, P.H. & FISHMAN, R.A. (1982). Alterations of membrane integrity and cellular constituents by arachidonic acid in neuroblastoma and glioma cells. *Brain Res.*, **248**, 151-157.

COLE, D.F. & UNGER, W.G. (1973). Prostaglandins as mediators for the responses of the eye to trauma. *Exp. Eye Res.*, **17**, 357-368.

EAKINS, K.E. (1971). Prostaglandin antagonism by polymeric phosphates of phloretin and related compounds. *Ann. New York Acad. Sci.*, **180**, 386-395.

EAKINS, K.E. (1977). Prostaglandin and non-prostaglandin mediated breakdown of the blood aqueous barrier. *Exp. Eye Res., Suppl.*, 483-498.

ERCAN, Z.S., ERSOY, F.F., TÜRKER, R.K. & BOR, N. (1978). The relaxing effects of angiotensin II and angiotensin III on canine isolated contracted tracheal muscle. *J. Pharm. Pharmacol.*, **30**, 452-453.

ERCAN, Z.S. & TÜRKER, R.K. (1977). A comparison between the prostaglandin releasing effects of angiotensin II and angiotensin III. *Agents Actions*, **7**, 569-572.

FÖRSTERMANN, U., HERTTING, G. & NEUFANG, B. (1986). The role of endothelial and non-endothelial prostaglandins in the relaxations of isolated blood vessels of the rabbit induced by acetylcholine and bradykinin. *Br. J. Pharmacol.*, **87**, 521-532.

FUJIWARA, H. (1983). Biochemical studies on uveal tissue, Report 4: Determination of prostaglandins by thin layer chromatography. *Folia Ophthalmol. Jpn. (Japanese with English abstract)*, **34**, 678-683.

KAWAHARA, Y., YAMAUCHI, J., FURUTA, Y., KAIBUCHI, K., TAKAI, Y. & FUKUZAKI, H. (1983). Elevation of cytoplasmic free calcium concentration by a stable thromboxane A₂ analogue in human platelets. *Biochem. Biophys. Res. Commun.*, **117**, 663-669.

MCGIFF, J.C., CROWSHAW, K., TERRAGNO, N.A. & LONIGRO, A.J. (1970). Release of a prostaglandin-like substance into renal venous blood in response to angiotensin II. *Circ. Res.*, **26 & 27** (Suppl I), I121-I130.

MESSINA, E.J., WEINER, R. & KALEY, G. (1975). Inhibition of bradykinin vasodilation and potentiation of norepinephrine and angiotensin vasoconstriction by inhibitors of prostaglandin synthesis in skeletal muscle in the rat. *Circ. Res.*, **37**, 430-437.

NARITA, S. & WATANABE, M. (1981). Response of the isolated rat iris sphincter to cholinergic and adrenergic agents and electrical stimulation. *Life Sci.*, **29**, 285-292.

NEEDLEMAN, P., MARSHALL, G.R. & SOBEL, B.E. (1975). Hormone interactions in the isolated rabbit heart: synthesis and coronary vasomotor effects of prostaglandins, angiotensin and bradykinin. *Circ. Res.*, **37**, 802-808.

TODA, N. (1980). Responses to prostaglandins H₂ and I₂ in isolated dog cerebral and peripheral arteries. *Am. J. Physiol.*, **238**, H111-H117.

TODA, N. (1981). Mechanism of vascular smooth muscle relaxation induced by angiotensins. In *Vasodilation*, ed. Vanhoute, P. & Leusen, I. pp. 151-157. New York: Raven Press.

TODA, N. (1982). Mechanism of action of carbocyclic thromboxane A₂ and its interaction with PGI₂ and verapamil in isolated arteries. *Circ. Res.*, **51**, 675-682.

TODA, N. (1984). Responses of human, monkey and dog coronary arteries *in vitro* to carbocyclic thromboxane A₂ and vasodilators. *Br. J. Pharmacol.*, **83**, 399-408.

TODA, N., BIAN, K., AKIBA, T., OKAMURA, T. (1987). Heterogeneity in mechanisms of bradykinin action in canine isolated blood vessels. *Eur. J. Pharmacol.*, **135**, 321-329.

TODA, N. & MIYAZAKI, M. (1978). Responses of isolated dog cerebral and peripheral arteries to prostaglandins after application of aspirin and polyphloretin phosphate. *Stroke*, **9**, 490-498.

TODA, N. & MIYAZAKI, M. (1981). Angiotensin-induced relaxation in isolated dog renal and cerebral arteries. *Am. J. Physiol.*, **240**, H247-H254.

TODA, N., NAKAJIMA, M., OKAMURA, T. & MIYAZAKI, M. (1986). Interactions of thromboxane A₂ analogs and prostaglandins in isolated dog arteries. *J. Cardiovasc. Pharmacol.*, **8**, 818-825.

TÜRKER, R.K. (1982). Evidence for a prostacyclin-mediated chronotropic effect of angiotensin II in the isolated cat right atria. *Eur. J. Pharmacol.*, **83**, 271-275.

UEDA, N., MURAMATSU, I., SAKAKIBARA, Y. & FUJIWARA, M. (1981). Noncholinergic and nonadrenergic contraction and substance P in rabbit iris sphincter muscle. *Jap. J. Pharmacol.*, **31**, 1071-1079.

UNGER, W.G., COLE, D.F. & BASS, M.S. (1977). Prostaglandin and neurologically mediated ocular response to laser irradiation of the rabbit iris. *Exp. Eye Res.*, **25**, 209-220.

YAMAUCHI, D.N., DESANTIS, L. & PATIL, P.N. (1973). Relative potency of cholinomimetic drugs on the bovine iris sphincter strips. *Invest. Ophthalmol.*, **12**, 80-83.

(Received October 16, 1987)

Revised February 16, 1988

Accepted May 12, 1988